semiconductor device - traduzione in Inglese
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

semiconductor device - traduzione in Inglese

ELECTRONIC COMPONENT THAT EXPLOITS THE ELECTRONIC PROPERTIES OF SEMICONDUCTOR MATERIALS
Semiconductor devices; Semiconductor device physics; Semiconductor Devices; Semiconductor electronics; Semiconductor component; History of semiconductor device development
  • An n–p–n bipolar junction transistor structure
  • A stylized replica of the first transistor
  • Outlines of some packaged semiconductor devices
  • Operation of a [[MOSFET]] and its Id-Vg curve. At first, when no gate voltage is applied. There is no inversion electron in the channel, the device is OFF. As gate voltage increase, the inversion electron density in the channel increase, the current increases, and the device turns on.

semiconductor device         

общая лексика

полупроводниковое устройство

электронное устройство, основные характеристики которого обусловлены прохождением тока через полупроводник

полупроводниковый прибор

Смотрите также

semiconductor

semiconductor manufacturing         
MANUFACTURING PROCESS USED TO CREATE INTEGRATED CIRCUITS
Semiconductor manufacturing; Fabrication (semiconductor); Silicon chip fabrication; Integrated circuit fabrication; Chip fabrication; Semiconductor fabrication; Semiconductor Manufacturing; IC assembly; Semiconductor manufacturing equipment; Fab process; Semiconductor growth; Fabrication process; Semiconductor manufacturing processes; CPU fabrication; CPU manufacturing; Semiconductor node; Node (semiconductor fabrication); Technology node; Semiconductor process technology; Process node; Semiconductor manufacturing process; Semiconductor fabrication process; Minimum feature size; Process size; Integrated circuit manufacturing; History of semiconductor device fabrication; Device yield; Yield (semiconductor)

общая лексика

производство полупроводников

Смотрите также

FAB; semiconductor; wafer

semi-conducting         
  • [[John Bardeen]], [[William Shockley]] and [[Walter Brattain]] developed the bipolar [[point-contact transistor]] in 1947.
  • [[Karl Ferdinand Braun]] developed the [[crystal detector]], the first [[semiconductor device]], in 1874.
  • ingot]] of [[monocrystalline silicon]]
  • [[Silicon]] crystals are the most common semiconducting materials used in [[microelectronics]] and [[photovoltaics]].
MATERIAL THAT HAS ELECTRICAL CONDUCTIVITY INTERMEDIATE TO THAT OF A CONDUCTOR AND AN INSULATOR
Semiconductors; Semi-Conductors; Semi-conductor; Semiconductor physics; Semiconducting material; List of semiconductor devices; Semiconductor material; Semiconducting; Semi conductor; Semiconductive; Electronic Materials; Semiconduction; Semicon; Electronic materials; Semi-conducting; Semiconductivity; Semi conductors; Physics of semiconductors; Electronic substance

общая лексика

полупроводниковый

Definizione

УСТРОЙСТВО
1. установленный порядок, строй.
Государственное у. Общественное у.
2. техническое сооружение, механизм, машина, прибор.
Решающее у. Регулирующее у.
3. см. УСТРОИТЬ
, -ся.
4. расположение, соотношение частей, конструкция чего-нибудь.
Удобное у. помещения. Прибор сложного устройства.

Wikipedia

Semiconductor device

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum (typically liberated by thermionic emission) or as free electrons and ions through an ionized gas.

Semiconductor devices are manufactured both as single discrete devices and as integrated circuit (IC) chips, which consist of two or more devices—which can number from the hundreds to the billions—manufactured and interconnected on a single semiconductor wafer (also called a substrate).

Semiconductor materials are useful because their behavior can be easily manipulated by the deliberate addition of impurities, known as doping. Semiconductor conductivity can be controlled by the introduction of an electric or magnetic field, by exposure to light or heat, or by the mechanical deformation of a doped monocrystalline silicon grid; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs due to mobile or "free" electrons and electron holes, collectively known as charge carriers. Doping a semiconductor with a small proportion of an atomic impurity, such as phosphorus or boron, greatly increases the number of free electrons or holes within the semiconductor. When a doped semiconductor contains excess holes, it is called a p-type semiconductor (p for positive electric charge); when it contains excess free electrons, it is called an n-type semiconductor (n for a negative electric charge). A majority of mobile charge carriers have negative charges. The manufacture of semiconductors controls precisely the location and concentration of p- and n-type dopants. The connection of n-type and p-type semiconductors form p–n junctions.

The most common semiconductor device in the world is the MOSFET (metal–oxide–semiconductor field-effect transistor), also called the MOS transistor. As of 2013, billions of MOS transistors are manufactured every day. Semiconductor devices made per year have been growing by 9.1% on average since 1978, and shipments in 2018 are predicted for the first time to exceed 1 trillion, meaning that well over 7 trillion have been made to date.

Traduzione di &#39semiconductor device&#39 in Russo